

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF MATHEMATICS CLASS IX WORKSHEET NO-11 AREAS OF PARALLELOGRAMS AND TRIANGLES

SECTION A: (1 MARK)

1.	Find the area of parallelogram PQRS having base 11.2cm and altitude 6.5cm.	(72.8sq.cm)
2.	ABCD is a rectangle with O as any point in its interior if $ar(\Delta AOD)=3$ sq.cm, $ar(\Delta BOC)=6$ sq.cm Then find ar(rectangle ABCD).	(18sq.cm)
3.	ABCD is a parallelogram , P is any point on CD if $ar((\Delta DPA)=15 \text{ sq.cm}, ar(\Delta APC)=20 \text{ sq.cm}$ then find the $ar(\Delta APB)$.	(35sq.cm)
SECTION B: (2 MARKS)		
4.	If area of parallelogram ABCD is 80 sq.cm. then find ar((ΔADP). D C	(40sq.cm.)
5.	In ΔABC , AD is the median to BC . E is point on AD such that AE=ED If ar (ΔABC)=144sq.cm find ar(ΔDEC).	(36sq.cm.)
6.	The area of a parallelogram ABCD is 36sq.cm. What is the area of ΔABC ?	(18sq.cm.)
7.	ΔABC is an equilateral triangle D and E are the mid-points of BC, AB respectively If BC=4cm Find ar(ΔBED)	(√3 sq.cm.)

SECTION C: (3 MARKS)

- 8. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that $ar(\Delta APB) X ar(\Delta CPD) = ar(\Delta APD) X ar(\Delta BPC)$
- **9.** In the figure, ABCD, DCFE and ABFE are parallelograms Show that $ar(\Delta ADE) = ar(\Delta BCF)$

10. ABCD is a parallelogram. E is a point on BA such that BE=2 X EA and F is a point on DC such that DF =2 X FC. Prove that AECF is a parallelogram whose area is one-third of the area of parallelogram ABCD.

SECTION D: (4 MARKS)

11. ABCD and PQRC are rectangles. Q is the mid-point of AC. Show that P is the mid-point (1:4) of DC and R is the mid-point of BC. Also, find the ratio of ar(ABCD) and ar(PQRC)

- **12.** E is the mid-point of the median AD of $\triangle ABC$ Prove that $ar(\triangle ABE) = \frac{1}{4} ar(\triangle ABC)$ (CCE2010)
- 13. If BD is one of the diagonal of quadrilateral ABCD. AM and CN are ⊥ from the points (5cm) A and C respectively BD. If BD =12cm, AM=6cm and area of quadrilateral is 66 sq.cm. then find CN