INDIAN SCHOOL MUSCAT
 SENIOR SECTION
 DEPARTMENT OF MATHEMATICS
 CLASS IX
 WORKSHEET NO-11
 AREAS OF PARALLELOGRAMS AND TRIANGLES

SECTION A: (1 MARK)

1. Find the area of parallelogram PQRS having base 11.2 cm and altitude 6.5 cm .
2. $A B C D$ is a rectangle with O as any point in its interior if $\operatorname{ar}(\triangle A O D)=3 \mathrm{sq} . \mathrm{cm}$, $\operatorname{ar}(\triangle B O C)=6 \mathrm{sq} . \mathrm{cm}$ Then find $\operatorname{ar}($ rectangle $A B C D)$.
3. ABCD is a parallelogram, P is any point on CD if $\operatorname{ar}((\triangle D P A)=15 \mathrm{sq} . \mathrm{cm}$,
(35sq.cm) $\operatorname{ar}(\triangle A P C)=20 \mathrm{sq} . \mathrm{cm}$ then find the $\operatorname{ar}(\triangle A P B)$.

SECTION B: (2 MARKS)

4. If area of parallelogram $A B C D$ is 80 sq.cm. then find $\operatorname{ar}((\triangle A D P)$.

5. In $\triangle A B C, \mathrm{AD}$ is the median to BC . E is point on AD such that $\mathrm{AE}=\mathrm{ED}$

If $\operatorname{ar}(\triangle A B C)=144 \mathrm{sq} . \mathrm{cm}$ find $\operatorname{ar}(\triangle D E C)$.
6. The area of a parallelogram $A B C D$ is $36 \mathrm{sq} . \mathrm{cm}$. What is the area of $\triangle A B C$?
7. $\triangle A B C$ is an equilateral triangle D and E are the mid-points of BC, AB respectively ($\sqrt{3} \mathrm{sq} . \mathrm{cm}$.) If $\mathrm{BC}=4 \mathrm{~cm}$ Find $\operatorname{ar}(\triangle B E D)$

SECTION C: (3 MARKS)

8. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each other at P.

Show that $\operatorname{ar}(\triangle A P B) \mathrm{X} \operatorname{ar}(\triangle C P D)=\operatorname{ar}(\triangle A P D) \mathrm{X} \operatorname{ar}(\triangle B P C)$
9. In the figure, $A B C D, D C F E$ and $A B F E$ are parallelograms

Show that $\operatorname{ar}(\triangle A D E)=\operatorname{ar}(\triangle B C F)$

10. $A B C D$ is a parallelogram. E is a point on $B A$ such that $B E=2 X E A$ and F is a point on $D C$ such that $D F=2 X F C$. Prove that AECF is a parallelogram whose area is one-third of the area of parallelogram ABCD.

SECTION D: (4 MARKS)

11. $A B C D$ and $P Q R C$ are rectangles. Q is the mid-point of $A C$. Show that P is the mid-point of $D C$ and R is the mid-point of $B C$. Also, find the ratio of $\operatorname{ar}(A B C D)$ and $\operatorname{ar}(P Q R C)$

12. E is the mid-point of the median AD of $\triangle A B C$

Prove that $\operatorname{ar}(\triangle A B E)=\frac{1}{4} \operatorname{ar}(\triangle A B C)$
(CCE2010)
13. If $B D$ is one of the diagonal of quadrilateral $A B C D$. $A M$ and $C N$ are \perp from the points
A and C respectively $B D$. If $B D=12 \mathrm{~cm}, A M=6 \mathrm{~cm}$ and area of quadrilateral is $66 \mathrm{sq} . \mathrm{cm}$. then find CN

